

CENTRO UNIVERSITÁRIO CTC

DEPARTAMENTO Programa de Pós-graduação em Metrologia

MQI2957 Tópicos Especiais em Metrologia – Informação Quântica

CARGA HORÁRIA TOTAL: 45 HORAS (3-0-0) CRÉDITOS: 3

OBJETIVOS

Apresentar ao aluno a área do conhecimento de Informação Quântica e as ferramenta matemáticas necessárias para modelar o funcionamento dos dispositivos e protocolos de computação quântica e comunicação quântica.

EMENTA

Espaços de Hilbert. Sistemas de dois níveis: qubits. Representação vetorial e matricial. Matrizes de densidade. Estados puros e mistos. Operadores de Medidas com Valores Positivos. Transformações sobre qubits. Estados emaranhados. Computação Quântica: os limites da computação clássica e classes de complexidade. Circuitos Quânticos. Algoritmos Quânticos: Algoritmo de Shor; Algoritmo de Grover. O canal quântico e ruído quântico. Correção de erros. Entropia de von Neumann. Exemplos de aplicação: teletransporte quântico, entanglement swapping. Criptografia quântica.

PROGRAMA Qubits

Revisão de conceitos básicos de álgebra linear. Postulados da física quântica. Espaços de Hilbert. Teorema de Representação de Riesz. Notação de Dirac. Qubits. Estados mistos e o operador de densidade. Parâmetros de Stokes e a Esfera de Bloch-Poincaré. Sistemas compostos: estados separáveis e emaranhados. Carga horária: 12 horas

Medidas em Qubits

O postulado da medida. Medidas projetivas. Operadores de Medidas com Valores Positivos. Medidas em estados mistos e estados emaranhados. Purificação. O operador de densidade reduzido. Caracterização de estados: tomografia de estado quântico. Carga horária: 3 horas

Operações em Qubits

Evolução no tempo e a Equação de Schrödinger. Transformações em qubits. Portas lógicas quânticas. A operação CNOT. Carga horária: 3 horas

Computação Quântica

O computador quântico universal. Comparação com a computação clássica. O problema da descoerência. Simulação de processos quânticos. A Transformada de Fourier quântica. Algoritmos de Deutch, Grover e Shor. O estado da arte da computação quântica. A linguagem de programação Q#. Carga horária: 6 horas

O Canal Quântico

O canal quântico. Tipos de ruído introduzidos pelo canal quântico. Tomografia quântica de processo. Medidas de distância de informação quântica. Correção de erros. Distilação de emaranhamento. Carga horária: 3 horas

Entropia e Informação Quântica

Entropias de Shannon e Von Neumann. Sub-aditividade forte. O problema da distinção de estados quânticos. Teorema da Não-Clonagem. Compressão de dados. Carga horária: 6 horas

Criptografia Quântica

Criptografia de chave pública e chave privada. A cifra de Vernam. Protocolo BB84. Amplificação de privacidade. A Desigualdade de Bell-CHSH. O protocolo de Ekert. Protocolos "device-independent". Violações da Desigualdade de Bell como provas de aleatoriedade. Carga horária: 6 horas

Redes de Comunicação Quântica

Teletransporte quântico e entanglement swapping. Redes quânticas: roteamento, distribuição de emaranhamento, limites de geração de chaves secretas. Repetidores quânticos. Simulação de redes quânticas. Carga horária: 6 horas

Outras Aplicações

Exemplos de outras aplicações da informação quântica ou assuntos relacionados: Post-Quantum Cryptography; Quantum Coin-Tossing; Quantum Internet; etc. Carga horária: 3 horas

AVALIAÇÃO

Listas de exercícios (individuais), prova (individual) e trabalho (individual ou em grupo).

BIBLIOGRAFIA

NIELSEN, M. e CHUANG, I. "Quantum Computation and Quantum Information".

PRINCIPAL

Cambridge University Press, 2010

D. BOUWMEESTER, A. EKERT e A. ZEILINGER, "The Physics of Quantum Information". Springer, 2000.

VEDRAL, V. Introduction to Quantum Information Science". Oxford University Press, 2007

BIBLIOGRAFIA

MANDEL, L. e WOLF, E. "Optical Coherence and Quantum Optics". Cambridge University Press, 1995.

COMPLEMENTAR

VEDRAL, V. "Modern Foundations of Quantum Optics". Imperial College Press, 2006.